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A set of "dimensionless" equations of state is used to show that the Einstein 
field equations governing a class of Bianchi VI o imperfect fluid cosmologies 
reduce to a plane-autonomous system of equations. The qualitative behavior of 
the underlying cosmological models is obtained by investigating this plane- 
autonomous system. 

1. INTRODUCTION 

Bianchi cosmologies, as alternatives to standard perfect fluid Fried- 
mann-Robertson-Walker (FRW) models, are of interest because of their 
richer structures, both geometrically and physically. Bianchi VI0 spatially 
homogeneous models are of interest because they are complex enough to 
allow the inclusion of heat conduction in a natural way. The role played by 
viscosity and dissipative processes in cosmology has already attracted much 
attention, since it provides a possible explanation for both the currently 
observed highly isotropic matter distribution and the high entropy per 
baryon in the present state of the universe (Misner, 1968). The influence of 
viscosity on the character of cosmological evolution has been studied by 
many other researchers. Belinskii and Khalatnikov (1976) were the first to 
consider the qualitative behavior of spatially homogeneous viscous fluid 
cosmological models in any generality. Models which include heat conduc- 
tion have also been studied in spatially homogeneous cosmologies (Bradley 
and Sviestins, .1984). 

In some recent papers, Bianchi V imperfect fluid cosmology was 
investigated (Coley, 1990a). The Einstein field equations governing these 
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cosmological models reduce to a plane-autonomous system of equations 
upon the introduction of  a set of "dimensionless" equations of  state 
(Coley, 1990b), thus enabling a qualitative analysis of  the models to be 
undertaken (Coley and Dunn, 1992). The purpose of  this work is to use the 
above approach to study the qualitative behavior of a class of Bianchi VIo 
spatially homogeneous cosmologies in which the source of  the gravitational 
field is an imperfect fluid with both viscosity and heat conduction. 

2. EINSTEIN FIELD EQUATIONS 

The diagonal Bianchi type VI o spatially homogeneous metric is given 
by 

ds 2 = _ dt 2 + X2(t) dx 2 + yz(t)e --2x dy2.3t_ Z2(t)e2X dz 2 (2.1) 

in which the source of  the gravitational field is taken to be a (comoving) 
viscous fluid with heat conduction, with energy-momentum tensor 

Tab : (p + fi)u.ub + ffg.b -2qaab + qaub + Uaqb (2.2) 

where 

/~ = p - ~0 (2 .3)  

where p is the matter density, a~b is the shear tensor, q~ is the heat 
conduction vector and orthogonal to the fluid four-velocity u ~, p is the 
thermodynamic pressure, 0 is the expansion scalar, and ~ and q are the 
coefficients of  bulk and shear viscosity, respectively. The nontrivial Einstein 
field equations are given by 

X--Y + X--Z + Y Z  X 2= p (2.4) 

2 
Z Y = q~ (2.5) 

Z I;'Z 1 2 /2X_ I ~ 2~'~ 
r z r z  x2=P-5"  r -2) (2 .6)  

Y Z ]/'Z --= - t l  _ 2 _/'2 I~ 2 2 ~  
X Z X Z + x ~ = P - 3 ) I \  Y X -2) (2.7) 

x r xr+x =P-3"\ -2 x (2.8) 

where the units have been chosen such that 8nG = 1. We regard (2.4) as the 
definition of  p. Note that when Y / Z  = const, the heat conduction is zero. 
For the Bianchi VI0 models under consideration, the shear scalar, expan- 
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sion, and the Ricci curvature of  the three-dimensional hypersurfaces of  
homogeneity, 3R, are given by 

1 

2 I~ 2 
0 =~+~+~ 

3R = - 6 X -  2 

~/'~" i'2 .82] 
x Y  YZ -~ (2.9) 

(2.10) 

(2.11) 

By (2.4), (2.9), and (2.10), we obtain the "generalized Friedmann equa- 
tion" or "first integral" 

02 - 3 - ~5 + 3o.2 + 3p (2.12) 

and by adding (2.6)-(2.8) we obtain the Raychaudhuri equation 

1 2 2 1 
{J = - 3  0 - 2o- - ~ (p + 3p) (2.13) 

By taking the derivative of (2.12) and using (2.6), (2.7), and (2.5), we 
obtain the independent equation 

d = -2rlo.-o.O + 1_~1", q2"~m[ "l ,~2 _2 ) 

Finally, from the conservation law ITab u = 0) we find that \ ;b a 

f~ = - ( p  +p)O + ~02 + 4qo. 2 (2.15) 

Now, we define the variables fl and x by 

(which measures the rate of  shear in terms of  the expansion), and 

3p 
x 02 (2.17) 

(which measures the dynamical importance of  the matter content). We also 
introduce a new time coordinate f~ by 

df~ 0 
l = e-n"  _ (2.18) 

' d t  3 
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(where l is the representative length scale with 0 = 3i/l). Then with the aid 
of (2.12) and (2.13), equations (2.14) and (2.15) reduce to 

dfl 1 ( 9p .  9~ 12~1~_1(4 q~V/2 
d--~=2 ~ 4 - ~ 2 - x - 0 - 7 - t - 0  - +  0 ] 2 \  ~-7) (4--J  ~2-4x)  

(2.19) 

dX = x ( 1 - x  - ~2) + ~2 (l - x )  -9~O (1 -x )  - 3---ff (2.20, 

Finally, from (2.12) and the nonnegative nature of p, we observe that the 
region of interest is 

/32 + 4x < 4  

x -> 0 (2.21) 

3. EQUATIONS OF STATE 

Now, in order to complete the system of equations we need to specify 
four equations of state for p, ~, 7, and ql. Following Coley (1990b), we 
introduce "dimensionless" equations of state of the following form: 

p/o2 = l ( ~  _ 1 )x  

~/0 = ~oX m 

( 3 . 1 )  
7/0 = ~/oX" 

ql/0 = (1/x/~)~c0/~ 

The first equation is the barotropic equation of state, p -- (y - 1)p, 
where 1 < 7 <2. The other three equations are assumed so that (2.19) 
and (2.20) reduce to a plane-autonomous system [where ~0, ~/0, and ~:0 
(0 < Xo -< 1) are nonnegative constants and m and n are also nonnegative 
constant parameters]. Here we shall simply remark that equations (3.1) are 
assumed to be valid (at least) in an asymptotic sense. In contrast to the 
work of Coley and Dunn (1992), we have included heat conduction in a 
general way. The quantity q~ appears in our plane-autonomous system, so 
that it is necessary to extend the set of "dimensionless equations of state" 
to incorporate a dimensionless equation of state for q~ [see the last 
equation of (3.1)] in order to keep the system two-dimensional and 
autonomous. In principle, we consider qj/0 =f ix ,  fl), but for simplicity we 
choose f to be a function of only ft. This equation of state includes an 
adjustable parameter •o, so that heat conduction can be "turned off." By 
using these equations of state, the Einstein field equations (2.19) and (2.20) 
for a Bianchi type VIo spatially homogeneous viscous fluid model with heat 
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conduction reduce to the following plane-autonomous system: 

dfl 1 t2  d--~ = 2 fl[4 - - (3~; - 2)x + 9~o x~ + 12rio xn] 

-- (1 -- x~) 1/2(4 - fi2 _ 4x) (3.2) 

d x  
d---~ = x[(37 - 2)(1 - x) - f12] _ 9r __ X )  - -  3,1oX"fi 2 (3.3) 

In the next section, we shall analyze the above system using techniques 
employed in Collins (1971), Belinskii and Khalatnikov (1976), and Coley 
and Dunn (1992). The remaining sections will be devoted to the results of 
the analysis. 

4. QUALITATIVE BEHAVIOR OF SOLUTION 

The region of interest #~ defined by (2.21) is the region bounded by the 
parabola f12 + 4x = 4 and the fl axis. The positive and negative arms of the 
parabola from (1, 0) to (0, 2) and ( 0 , - 2 ) ,  respectively, are themselves 
trajectories. In most cases we will see that the fl axis from (0, 0) to (0, - 2 )  
and (0, 2) is itself a trajectory. We shall also see that in general there will 
be at most seven isolated singular points in ~ ,  but not all occur at the same 
time. They are as follows: 

(0, 0), (0, 2), (0, - 2 ) ,  (0, 2A), (X, 0), (1, 0), (~, fl) 

where Z, A, ~, and/~/2, all belonging to the interval (0, 1), will be defined 
below. 

The analysis then consists of  determining the nature of these singular 
points (and calculating the associated eigenvectors). We shall describe a 
number of  cases and display their phase diagrams in the figures. We have 
generally chosen to consider m = n in each case below. In addition, we have 
considered m = n = 1/2 and m = n  = 3/2 as representative of the cases 
0 < m ,  n < l, and m, n > l, respectively. In the figures arrows refer to 
evolution in f~-time (f~-o oo indicates t ~0 ) .  

(a) ~o = ~/o = 0. 1r o = 0. In this ease there is no viscosity and heat 
conduction and our system of equations reduce to the Bianchi VI0 perfect 
fluid models which have been studied by Collins (1971). We identify two 
eases: (1) 1 < ?  <2 ,  (2) y =2 .  In case l, we have four nondegeneratr 
singular points. (1, 0) is a saddle and (0, - 2 )  is a stable 2-tangent node. 
(0, 2) is a degenerate singular point and the analysis shows that it must be 
of saddle type. Finally, the point [1 - ( 3 y  - 2 ) / 4 ,  (3y -2 ) /2 ]  is an unstable 
focus. In case 2, each point on the boundary of ~ is a nonisolated singular 
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point. The point (0, 2) has an exceptional character such that all trajecto- 
ries start from that point and terminate at a point on the boundary ~ .  The 
phase portraits are qualitatively the same as shown in Figs. 1 and 2, 
respectively. 

0 < ~0 < 1. I f  1 < y < 2, (1, 0) is saddle. The point (0, 2) is a stable 
2-tangent node (or stellar node). The point (0, - 2 )  is a stable 2-tangent 
node. We define 

q~ = 1 - 9/4(3y - 2) + (3y - 2)z/4(1 - Xo 2) 

= ( 3 ~  - 2 )  - 4 (  1 - ~ 0  2) 

-2 

Fig. 1. The figures depict the evolution of  a class 
of  Bianchi VIo imperfect fluid models in terms of  
dimensionless variables x and fl, defined by (2.16) 
and (2.17), respectively. The axes are drawn in the 
conventional sense (e.g., x increases from left to 
righ0, but the directions are marked, to prevent 
confusion with trajectories. Arrows refer to evolu- 
tion in fl-time ( f l - - * + ~  indicates t ~ 0 ,  or ap- 
proach to the singularity). This figure gives the 
phase portrait for the cases (o = ~/o = ro = 0 with 
I < T < 2 and (o = t/o = 0 with 0 < ro < l, which are 
qualitatively the same. 

2 

Fig. 2. Phase portrait corresponding to a perfect 
fluid with ~ = 2. 
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Now,  if O > 0 ,  the point  F given by [ 1 - ( 3 y - 2 ) / 4 ( 1 - x 0 2 ) , ( 3 y - 2 ) /  
2( 1 - x02) 1/2] occurs inside the region ~ as a nondegenerate  singular point.  
There is also the singular point  S (0, 2( 1 - Xo 2) 1/2). I f  �9 < 0, then point  S 
is a saddle. Now,  if W > 0, then F is an unstable 2-tangent node (see Fig. 
3). I f  ~F < 0, then F is an unstable focus (see Fig. 1) and if W = 0, then F 
would be an unstable stellar node. I f  �9 > 0, then the point  F is not  inside 
#t and the point  S is an unstable 2-tangent node. I f  �9 = 0, then F coincides 
with S and S is a degenerate singular point  which turns out  to be o f  
unstable 2-tangent-node type. The phase portrai t  is qualitatively the same 
as that  given in Fig. 4. I f  ~ = 2, the boundary  o f  0~ is a set o f  nonisolated 
singular points (see Fig. 5). 

Fig. 3. The phase portrait for the cases ~o = ~/o = 0 
with 0 < x o < l ,  where ~F>0 and O<0, and 
m = n = 1/2, 1, 3/2 ,  0 < x o < I, where 9~o < 3T - 2, 
which are qualitatively the same. 

2 

Fig. 4. The qualitative behavior of the following 
cases: ~o ffi ~/o = 0 with 0 < ro < 1 where �9 > 0 and 
1 <y <2; m = n  = I, 0 < t o <  1, with 9 (o<3y-2 ;  
and m = n = 3/2, 0 < ro < I, with 9~o < 3y - 2. 
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2 

Fig. 5. 

-2 

The qualitative behavior of the model 
with perfect fluid and heat conduction, where 

Xo = 1. This is an exceptional case in which there is heat conduction, 
but the corresponding plane-autonomous system takes a simpler form. 
There are four isolated singular points. If 1 < ~ < 4/3, then (0, 0) is an 
unstable 2-tangent node. (1, 0) is a saddle with separatrices fl = 0 and 
x = 1. (0, 2) is a stable 2-tangent node. (0, - 2 )  is also a stable 2-tangent 
node. If y = 4/3, the point (0, 0) becomes an unstable stellar node, because 
the two eigenvalues are equal. The remaining points still have the same 
character. If  4/3 < y < 2, the situation is exactly the same as 1 < ~ < 4/3 
except that x = 0 is the main eigendirection for the point (0, 0). If  7 = 2, 
the boundary of ~ is a set of nonisolated singular points. The only isolated 
singular point is (0, 0), which is an unstable 2-tangent node. The phase 
portraits are qualitatively the same as given in Fig. 4 for y ~ 2 and Fig. 5 
for ~ =2 .  

( b )  r e = n = 0 .  0 < x 0 < l .  In this case, if 9 ( 0 < 3 7 - 2 ,  the point 
(1, 0) is a saddle and another singular point (~,/~) exists, where/~ > 0. After 
investigation, this point is established to be a source. If  9(o > 3V - 2, only 
the point (1, 0) is singular and it is an unstable 2-tangent node. If  
9~o = 3 y -  2, the point (1, 0) is degenerate. By changing to polar coordi- 
nates and analyzing the signs of ~ and 0 close to the origin we find that 
(1, 0) is of unstable 2-tangent-node type. The phase portraits are qualita- 
tively the same as those sketched in Figs. 6 and 7, respectively. 

Xo = 1. When m = n = 0 the fl axis is not a solution of the system, so 
that trajectories may intersect the /~ axis, and (almost all) trajectories 
violate the weak energy conditions for finite time. This case is of two types, 
depending on whether (o is zero or not. If  (0 = 0, then there are two 
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Fig. 6. The  case m = n = 0  and  0 < x  o-<1 

wi th  9~ o -> 3y - -2 .  -2 

Fig. 7. The  case 0 -< x o -< 1 wi th  9(  o < 3y - 2. 

singular points. (1, 0) is a saddle and the point (0, 0) is an unstable 
2-tangent node (see Fig. 8). If  (o # 0 and 9(0 < 3 7 -  2, then (1, 0) is a 
saddle. (E, 0) with E = 9(o/(3~ - 2) is an unstable 2-tangent node (see Fig. 
7). If  9(0 > 3~ - 2, the only singular point is (1, 0), which is an unstable 
2-tangent node. Finally, if 9(0 = 3~ - 2, the only singular point is (1, 0), 
which is degenerate, and analysis shows that it is of unstable-node type (see 
Fig. 6 for the phase portraits). 

(c) m = n = 1/2. x0 = 1. In this case there are singular points (0, 0), 
(0, 2), (0, - 2 ) .  The corresponding system is not analytic at these points, 
but by transforming to a new variable u and a new time coordinate 
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-2  

Fig .  8.  T h e  c a s e  w h e r e  m = n = O, % = I ,  a n d  

~o=0. 

(u2= x; dDIdz  = u), we find that all three singular points are degenerate. 
At (0, 0), in the region of  interest there are invariant rays 0 = 0, Ir/2, and 
3n/2. By analyzing the signs of  ~ and ~J we find that the first and fourth 
quadrants are hyperbolic sectors. At (0, - 2 )  there are invariant rays 0 = 0 
and ~/4. The boundary of  ~ is represented by f12+ 4u2= 4, so the 
invariant ray 0 = 0 corresponds to the trajectory along the boundary of  ~ .  
Analysis shows that the two points (0, 2) and (0, - 2 )  are both of  stable- 
node type. There is a fourth singular point (1, 0). When 9(0 < 3y - 2, ( 1, 0) 
is a saddle and a fifth point (~, 0) occurs where E = [9(0/(3? - 2)] 2. It is an 
unstable 2-tangent node (see Fig. 3). If  9(0 > 3? - 2, (1, 0) is an unstable 
2-tangent node. When 9(0 = 3? - 2 ,  (1, 0) is a degenerate point which has 
the character of  two hyperbolic sectors. The phase portrait is qualitatively 
the same as given in Fig. 9. 

0 < X o <  1. In this case, there are singular points (1,0), (0, 2), 
( 0 , - 2 ) ,  (Ig, 0), and (0,211-xo2]~/2). The points (0,2) and ( 0 , - 2 )  are 
degenerate singular points, and standard analysis shows that they are of  
stable-node type. The point (0, 2[ 1 - ro 2] ~/2) is a degenerate singular point 
which consists of  two hyperbolic sectors. If  9(0 < 3T - 2, then the point 
(1, 0) is a saddle. In this case an interior point (~,/7) occurs and is a source. 
If  9(0 > 37 - 2, ( 1, 0) is an unstable 2-tangent node with the same eigen- 
directions. If  9~o = 3 7 -  2, then the point (1, 0) is of  unstable degenerate 
node type. The phase portraits are qualitatively the same as the case Xo = 1. 

x0=0 .  In this case (0 ,2 [1-x02]  ~/2) coincides with (0,2) and is 
degenerate. Analysis of  f and 0 near (0, 2) shows that the region between 
x = 0  and 0 = - n / 4  is a hyperbolic sector. Again if 9(0 < 3 7 -  2, then 
( 1, 0) is a saddle and there exists a source (~, if) where ff > 0 (see Fig. 11). 
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Fig. 9. The qualitative behavior  o f  the following 
cases: m = n = I / 2 ,  0 < x o  < 1  with 9~ o > 3 Y - 2 ;  
m = n  = 1, 0 < x  o < I, and  m = n  = 3 / 2 ,  0 <  Xo< 1, 
with 9(  o > 37 - 2. 

13 2 

Fig. 10. Phase por t ra i t  corresponding to the case 
m = n = 1, 3/2, xo = 0, with 9~o ~ 3~ - 2. 

If  9~o > 3 7 -  2, then (1, 0) is an unstable 2-tangent node. The phase 
portrait is sketched in Fig. 10. 

(d) m = n = 1. Xo = 1. If  9(o < 37 - 2, the singular point (0, 0) is an 
unstable 2-tangent node. The point (1, 0) is a saddle with separatrices x = 1 
and fl = 0 (see Fig. 4). If  9(o > 3 7 -  2, then (0, 0) is a saddle, and (1, 0) 
becomes an unstable 2-tangent node. The points (0, 2) and (0, - 2 )  in all 
cases are stable 2-tangent nodes (see Fig. 9). If  37 - 2 - 9( 0 = 0, each point 
(x, 0) for 0 < x < 1 is a singular point, i.e., the x axis is a line singularity. 
Calculating the slope of the trajectories as fl ~ 0 ,  we obtain df l /dx  ~ oo, 
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Fig. 11. Phase portrait for the case m = n  = 1, 3/2, 
go=0,  with 9(o < 3 ~ -  2. 

i.e., the trajectories are perpendicular to the x axis. The phase portrait is 
given in Fig. 12. 

0 < xo < 1. The points (0, 2) and (0, - 2 )  are stable 2-tangent nodes. 
Now, if 9(0 < 3y - 2 and A < 0, where 

A = 37 - 2 - 9~o - (12qo + 4)(1 - Xo 2) 

then the singular point (0, 211-  xo2] 1/2) is a saddle. In this case another 
singular point (2,/~) occurs, which calculation shows to be a source. In 
addition, the singular point (1, 0) is a saddle (see Fig. 3). If  A > 0, the point 

Fig. 12. The phase portrait for 
m = n = l , r  o = l w i t h 9 (  o = 3 y - 2 .  

the case 
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(0, 2[ t -/~0 2] 1/2) is an unstable 2-tangent node (see Fig. 4). If  9(o > 37 - 2, 
the point (1, 0) is an unstable 2-tangent node. The point (0, 2[ 1 -  x02] 1/2) 
becomes a saddle with the same separatrices as before. I f  9~o = 37 - 2, the 
only singular point is ( 1, 0), which an analysis of the sign of i: and 0 shows 
to be of  unstable 2-tangent-node type. The phase portrait is qualitatively 
the same as shown in Fig. 9. 

Xo=0. In this case the point (0, 211-  x02] 1/2) coincides with (0, 2) 
and A is always positive. (0, 2) is a degenerate singular point, which 
standard analysis shows to be of saddle type with x = 0 and fl + x - 2 = 0 
as separatrices. The various possibilities, depending on the sign of 
37 - 2 -  9(o, are the same as the previous case (i.e., m = n = 1/2, Xo = 0). 

(e) m = n = 3/2. xo = 1. If  7 4 2, there are singular points (0, 0), 
(1, 0), (0, 2), and (0, -2 ) .  The point (0, 0) is an unstable 2-tangent node. If  
7 = 4/3, then the origin is an unstable stellar node. The points (0, 2) and 
(0, - 2 )  are stable 2-tangent nodes. The rest of the analysis depends on the 
sign of 37 - 2 -  9~o. If  9~o > 37 - 2 ,  then there are two further singular 
points; (1, 0) is an unstable 2-tangent node and there is a saddle at (E, 0), 
where E =  [(37-2)/9~o] 1/2 (see Fig. 13). If  9~o < 3 7 - 2 ,  then (1, 0) is a 
saddle. I f  9( 0 = 37 - 2, then ( 1, 0) is degenerate, which calculation shows to 
be a saddle. [In this latter case the point (E, 0) coincides with (1, 0).] If  
7 = 2, the points (0, 2) and (0, - 2 )  are degenerate. Standard calculation 
shows them to be stable 2-tangent nodes. The remainder of the analysis is 
same as in the case 7 ~ 2. The phase portrait is qualitatively the same as 
that given in Fig. 4. 

0 < Xo < 1. 7 4 2. The points (0, 2) and (0, - 2 )  are stable 2-tangent 
nodes. If  9~o < 37 - 2, then (1, 0) is a saddle. If  37 - 2 < 4(1 - Xo2), then 

Fig. 13. The qualitative behavior of  the case 
r e = n = 3 / 2 ,  0 < x  o < 1 ,  where 9( o > 3 ~ , - 2  and 
3), - 2 > 4( 1 - Xo2). 

2 

1 X 

*2 
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the point (0, 2 1 1 -  Xo2] 1/2) is a singular saddle point. In this case another 
singular point (~,/~) in the interior of ~ occurs which calculation shows to 
be a source (see Fig. 3). If  3y - 2 > 4( 1 - Xo2), the point (0, 2[ 1 - xo 2] 1/2) is 
an unstable 2-tangent node (see Fig. 4). If  37 - 2  = 4(1 -Xo2), then the 
point (0, 2[ 1 - xo 2] 1/2) is a degenerate singular point which analysis shows 
to be of unstable-node type. The phase portrait related to this case is 
similar to the case 3? - 2 > 4(1 - x02). Finally, if 9(o > 37 - 2, then ( 1, 0) is 
an unstable 2-tangent node. If  3 7 - 2 > 4 ( 1 - x 0 2 ) ,  then the point 
(0, 2 1 1 -  Xo2] !/2) is an unstable 2-tangent node (see Fig. 13). In this case 
another singular point (~,/~) occurs in the interior of  ~ ,  which is a saddle. 
If  9~0 < 3 7 -  2, then the point (0, 2 1 1 -  Xo2] v2) is a saddle. The phase 
portrait is qualitatively the same as that given in Fig. 9. 

Xo=0.  In this case the point (0,211-Xo2] 1/2) coincides with the 
point (0, 2). Now (0, 2) is a degenerate singular point which is of saddle 
type. If  9(o < 37 - 2, then (1, 0) is a saddle and there is an interior singular 
point which is a source. If  9~o > 3? - 2, then (1, 0) is an unstable 2-tangent 
node and, as before, (0, 2) is a stable 2-tangent node. The phase portraits 
in this case are qualitatively the same as the case m = n = 1/2 with x0 = 0. 

Moreover, the investigation shows that all cases m = n > 1 are qualita- 
tively the same as the case m = n = 3/2 studied here. 

5. ENERGY C O N D I T I O N S  

The energy-momentum tensor satisfies certain physical inequalities. 

(i) The weak energy condition (WEC): 

- 2 0  > 0, - 2 o  + 2~ > 0 (~t = 1, 2, 3) (5.1a) 

where 20 corresponds to the eigenvalue associated with the timelike eigen- 
vector and 2~ are the eigenvalues associated with the eigenvectors of  Tab. 

(ii) The dominant energy condition (DEC): 

- 2 0  > 0, 2o < 4~ < - 2 o  (5.1b) 

(iii) The strong energy condition (SEC): 

3 

- 4 o +  ~ 4~ >0 ,  - 4 o + 4 ~  > 0  (5.1c) 
,u=l 

We note that care must be taken in checking these energy conditions 
in situations, similar to those under consideration here, in which the 
energy-momentum tensor is not diagonal. 
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The eigenvalues of the Bianchi VIo imperfect fluid energy-momentum 
tensor given by equation (2.2) are given by 

2 ~  ~ x + ~(y - 1 ) X  1 ,,, _.g w/,- . ] o = 2 k --~ 'Sr/ox (1 - t c2 ) ' / 2+  - -  
J 

2 1 = 1 [ ' _ ~ x + ~ ( y _ l ) x _ ~ o x l  1 ,. 2 . w~ ~]  
0 2 2 L - g / ~ n o x ( 1 - x ~ ) ~ / 2 - -  (5.2) 

..I 

0 2 0 2 - 3 (y - 1)x - ~oX" + qoX" x0fl + fl(1 - x 2) 1/2 

where 

[ , 1 2 1 ~ 
. . . .  -1. 302 

A ~x- - -~(y  1)x+~oxm+'~qoflx"(1 tr '/z 4tc2f12 

Now, a given model, with specific values for (0, qo, xo, m, n, and 3,, 
may or may not satisfy the weak and dominant and/or strong energy 
conditions for all x and ft. Because of  the complexity of  the eigenvalues, a 
full analysis of the energy conditions is difficult. But a full analysis can be 
achieved if we concern ourselves with the special case Xo = 0 (i.e., no heat 
conduction), where the energy-momentum tensor is diagonal. As an illus- 
tration, let us then consider this case in detail. By continuity, all results here 
would follow in the neighborhood of Xo = 0 (i.e., for small Xo). In this case, 
the eigenvalues are given by 

2 0 1 
~ --~X 

21 1 ,n 2 . 
0 2 - 3 (y - 1)x - ~oX - ~ ~/oflX (5.3) 

22 2a 1 ., 1 . 
0 2 - 02 - ~ (3' - 1)x - (oX + ~ rloflX 

The inequality -20  > 0 implies that x > 0. Any trajectory that crosses the 
fl axis must have x, and thus p, negative after (or before) a finite time. Such 
models can only be physically realistic for certain time periods. The only 
case in which trajectories can cross the fl axis is when m = n = 0, whence 
the WEC is violated. 

The remaining conditions of the WEC lead to 

1 m 2 n 
-g r x  - ~oX - g ~ollX ~ o 

~ m 1 n 
-~ 3,X - ;oX + ~ rlo~X > 0  

(5.4a) 

(54b) 
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In  order  to obtain a sufficient condit ion for  (5.4a) to be satisfied for all fl 
and x we put  fl = 2 (its max imum value), so that  

1 4 
-~ •X -- ~0 xm -- ~ ?lO xn ~-~ 0 (5,5) 

We will return to this inequality and discuss condit ions under  which it is 
satisfied for different values o f  m = n. We see that  (5.5) is a sufficient 
condit ion for (5.4b) to be satisfied. The D E C  leads to 

~ ( 2  - y)x 2 n _> 0 (5.6a) "~- GO xm ~- -~ ~ 0  x 

1 2 1 ( -- y)x + ~o x m  - -~ fltloX" > 0 (5.6b) 

A simple analysis shows that  the condit ion 

4 
G0 - ~ .o  - 0 (5.7) 

in addit ion to the WEC,  is a sufficient condit ion for the D E C  to be satisfied 
for all x and fl and m = n. Finally, the SEC implies that  

- ~ x - 3 G x  m --- 0 (5.8) 

in addit ion to the WEC.  
Now,  let us discuss the condit ions to be met in order  for the energy 

conditions (5.5) and (5.8) to be satisfied. For  the perfect fluid case (when 
fro = t/0 = 0), all energy conditions are met. When  m = n = 0, the W E C  can 
be satisfied for those parts o f  the trajectories with x -> (3~0 + 4r/0)/7, where 
y - 3Go - 4~/o > 0, else there are no values o f  x in ~ such that  the energy 
condit ions are met. The SEC can be satisfied for  x -> 9Go/(37 - 2), where 
3y - 2 > 9~o (in order  to keep x <- 1). When  m = n = 1/2, then the W E C  
can be satisfied for  those parts  o f  the trajectories with x -> [(3~o + 4t/o)/7] 2, 
where y - 3 G o - & / o  > 0 .  The SEC can be met for x > [9f fo / (3~-2) ]  2, 
where 3y - 2 > 9~o. For  0 < m( = n) < 1, similar condit ions exist for  the 
satisfaction o f  the W E C  and SEC, and the energy condit ions can be met 
for  x > 0. However,  the W E C  and SEC can never be met  in this case for 
x close to 0. When  m = n = 1, the W E C  is satisfied for all trajectories in 
provided ~ - 3~o - 4~/o > 0, and the SEC will be met if 3~ - 2 > 9~o. For  
example, in this case with y = 3/2, Go = 1/6, and ~/o = 1/12, all the energy 
conditions are met. 

When  m = n  = 3 / 2 ,  those parts o f  the trajectories with x < 
[7/(3Go + &lo)] 2, where ~ - 3Go - 4~/o > 0, satisfy the WEC,  and those with 
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x -< [(37 - 2)/9(0] 2, where 37 - 2 > 9(0, satisfy the SEC. Clearly there are 
value of the parameters  for which the energy conditions are met for all 
trajectories in ~ .  This is the situation in all cases with m, n = 1. The 
condition 3(0 - 4~/0 > 0 is a sufficient condition for the DEC to be satisfied 
for all cases. 

In Figs. 6 - 8  (corresponding to the case m = n = 0, 0 < x0 < 1), the 
WEC cannot be satisfied close to the fl axis (i.e., x ~ 0). The SEC can never 
be satisfied in Fig. 8 and cannot be satisfied for x g 0 in Fig. 6. In Figs. 10 
and 11 (corresponding to the case m = n = 1/2, K 0 = 0), the WEC cannot 
be satisfied for those parts of  the trajectories in which x ~ 0 and the SEC 
cannot be met in Fig. 10 when x ~ 0 and in Fig. 11 for all trajectories in 
~ .  In Figs. 10 and 11 (corresponding to the case rn = n = 1, x0 = 0), the 
WEC is satisfied provided ? - 3(0 - 4r/o >- 0, and the SEC is satisfied only 
in Fig. 10 where 9~o < 37 - 2. 

6. D I S C U S S I O N  

By using geometric techniques of  the theory of  differential equations, 
we have been able to determine the precise qualitative behavior of  a class 
of  Bianchi VIo imperfect fluid models with equations of  state (3.1). The 
global behavior depends mainly on the bulk viscosity, although the precise 
local details depend on both the bulk and shear viscosity. We have found 
that a variety of  possibilities exist. F rom the derived dynamical system we 
have been able to calculate the asymptotic behavior of  models both to the 
past and future. 

Certain phase portraits for Bianchi VIo (BVIo) models, in which 
viscosity and heat conduction have been included, are remarkably similar 
to those in the Bianchi V (BV) case (Coley and Dunn, 1992). The case 
(o = r/o = 0, Xo = 1 is qualitatively the same as in the BV perfect fluid case. 
When 0 < Xo < 1, the points (1, 0) and (0, - 2 )  have the same character in 
both types. When m = n = 0 and Xo = 1, the phase portraits in both types 
are qualitatively the same, although the phase portraits are no longer 
symmetric about  the x-axis in type VI 0. In the case m = n = 1 and x0 = 1, 
when 9(0 < 37 - 2, the phase portrait  is the same as that for the BV perfect 
fluid with 1 ~ 7 < 2. 

We note that in the BV case the trajectories are not symmetric about  
the x axis, except in the perfect fluid case, while in type VIo models, all 
cases with Xo = 1 are symmetric about  the x axis. In the type V case the 
trajectories cannot  intersect the x axis, but all trajectories in the cases with 
0 < x0<  1 here cross the x axis. In the BV case, x = 0  is not always a 
solution of  the plane-autonomous system of type BV (i.e., some trajectories 
intersect the ~ axis and consequently violate the WEC). However, in type 
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BVIo, x = 0 is itself a trajectory (unless m = n = 0), whence no other 
trajectories can intersect it. In all cases (unless m = n = 0) when ro = 0, the 
point (0, 2) is a saddle, unlike in the BV case. 

In the Bianchi type VIo perfect fluid case, when 1 < ~ < 2, a focus 
occurs, but in the presence of  dissipation this t'eature always disappears. 
Moreover, the extra singular points (0, 0) or (0, 2[ 1 - ro 2] 1/2) appear when 
viscosity and heat condition are taken into account. In the perfect fluid 
case, the points (1, 0), (0, 2), and (2,/~) correspond to a saddle, saddle, and 
focus, respectively, but in the presence of  viscosity and heat conduction the 
role of  these points may change; for example, (1, 0) may become an 
unstable node and (0, 2) a stable node. Indeed, the effect of  viscosity and 
heat conduction produce many different possible phase portraits, unlike the 
unique picture in the perfect fluid case. 

In contrast to earlier work (Coley and Dunn, 1992; Belinskii and 
Khalatnikov, 1976), we have included heat conduction in a general way. 
The quantity q~ appears in our plane-autonomous system, so that it is 
necessary to extend the set of  "dimensionless equations of  state" to 
incorporate a dimensionless equation of  state for ql in order to keep the 
system two-dimensional and autonomous. This equation of  state includes 
an adjustable parameter Xo such that heat conduction can be "turned off." 
In the absence of  heat conduction (x0 = 0) the cases m = n = 1, 1/2, 3/2 
have the same qualitative behavior. 

The singular point (0, 2 1 1 -  x02] 1/2) approaches the point (0, 2) as 
xo ~ 0; when Xo = 0, the two points coincide and (when m = n = 1/2, 1, 3/2) 
the singular point (0, 2) is of  degenerate saddle type. This can never happen 
in the corresponding BV models. 

Finally, let us consider the exact solutions corresponding to the 
various singular points. The singular points that occur on the boundary 
f12+4x = 4  correspond to Bianchi I solutions, which are well known 
(Collins, 1971). Let a singular point be denoted by (:~, fl), where ~ and/~are 
constants satisfying/~2 + 4~7 < 4. From equation (2.12) we find that 

X(t)O(t)  = 2x//'3(4 - /~2 _ 4~7)- 1/2 (6.1) 

It then follows from equations (2.5), (2.9), and (2.10) that XX -1, I?y-1, 
and 2~Z -~ are all proportional to 0, and that (after rescaling) the corre- 
sponding exact solutions are of  the form 

X ( t )  = at, Y( t )  = t b, Z ( t )  = t c (6.2) 

where a, b, and c are constants. 
In the cases of  the singular points (0,/~) and QT, 0), with pO -2 = 0 and 

tr0-~ = 0, it is found that there are no (corresponding) consistent exact 
solutions of  the Einstein field equations of  the form (6.2) with p = 0 and 
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a = 0, respectively. In the remaining case (~,/~; ~2 + ~ 2  5 0 )  there do 
indeed exist exact solutions of the form (6.2), where the various constants 
satisfy the following algebraic relations: 

2 +/~&)(4 fiE 42)-  a = - - ~  (1 _ - -  1 1 2  

v - '  

b=(1 - l  - - - - fXo f l  - ~/~3)(1 +/~3) -1 (6.3) 
\ 

c=(1 J 3  - 1 +-~- ~o~ - g g~)(1 + g~)-' 
\ 

where 6 = (1 - Xo2) ~/2 and )? and fl satisfy equations (3.2) and (3.3) with 
x" = 8" = 0 in terms of  7, t/o, ~o, and ro (and m and n); e.g., for m = n = 1 
we have that 

~=1 1+_3.o ~2 
Xo - 9~o 

(6.4) 

/~= ~ { -  1 + [1 + 3r/o(3~, - 2 - 9(0)-2],/2} 

where 37 - 9(0 - 2  > 0 and 

[~ + 3t/o(tCo - 9(0)] 1/2 < 3r/o(X ~ _ 9(0) 1/2( 1 + 3r/o) - i/2 + 3 

in order for (2,/~) to be in ~ .  
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